

Nathan Dayton

ADNET SYSTEMS, Inc. nathan@muspin.gsfc.nasa.gov

Slide Number 1

NETWORK

DESIGN

Slide Number 2

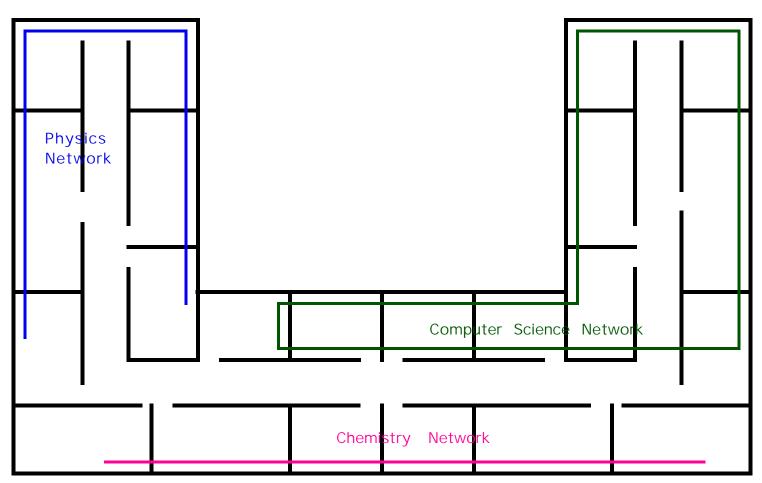
Previously there have been two phases in the design of a network

- Department Design
- Interconnect Design

Previously departments

- Funded their networks
- Designed their Networks
- Installed their networks
- Managed their networks

Slide Number 4


Each Department developed a network that suited their needs.

These networks were developed to serve the immediate need with no consideration for

- Expansion needs
- Interconnection with others
- Standardization
- Compatibility with Future Standards

Slide Number 6

These networks were of two Types

- IBM Token Ring
- 10Mbs Ethernet

These were of various types and supported various protocols TCP/IP, DECnet, IPX, AppleTalk

Interconnect

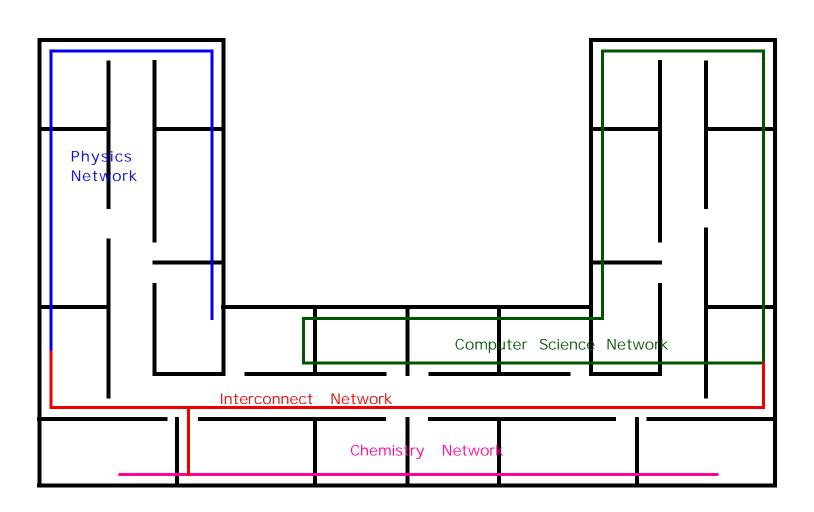
Once several departmental networks had been installed the next step was to interconnect them.

Because there was no standardization this was difficult.

In most cases full interoperability was not possible.

Interconnect

The result was a network


- With multiple standards
- Composed of semi compatible sub nets
- Without full functionality
- Based on older technologies

Slide Number 9

Interconnect

Slide Number 10

Network Consists of

CABLE PLANT

NETWORK EQUIPMENT

WORKSTATIONS AND PRINTERS

Slide Number 11

The cable plant is the network cabling and associated patch panels and connectors.


Slide Number 12

Cable Plant is the most:

- expensive single part of your network
- failure prone part of your network
- likely place for reducing cost

A good cable plant alone will not make a good network.

HOWEVER,

the easiest way to make a bad network is with a poor cable plant

Slide Number 14

The few dollars saved by cheap

Cable, Connectors and Shoddy Installation

Will cost many times more in

Maintenance and Down Time.

Slide Number 15

PLAN FOR THE

FUTURE

design your cable plant with tomorrows network in mind

" INSTALL CABLE ONCE"

Slide Number 16

Todays network is based on

10 megabit per second technology.

With a little care in the design and

Minimal Additional Cost

we can support tomorrows

100 megabit per second technology.

Slide Number 17

This can be achieved by installing a CAT-5 Certified cabling System.

CAT-5 COMPLIANT

is NOT

CAT-5 CERTIFIED

Slide Number 18

Cat-5 is a EIA/TIA proposed addition for the EIA/TIA 568 standard

It is a standard for 100 MHz

Unshielded Twisted Pair Cable

and connectors

Slide Number 19

All associated hardware must also be CAT-5

- Connectors
- Patch Panels
- Wall Jacks

Slide Number 20

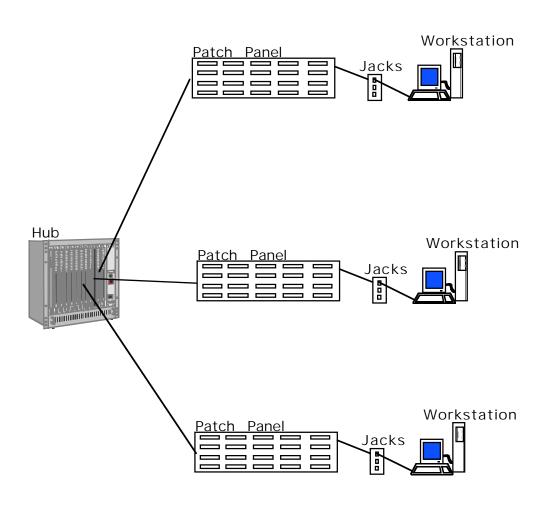
Obviously it will take more than quality components to make a superior network.

A Structured cabling system is required to take advantage of today's requirements and provide service to emerging technologies.

Slide Number 21

In a structured cabling system each device is wired to a central point using a star topology.

This facilitates system interconnection and allows for simple expansion and reconfiguration.


The simplicity of a generic cable structure is innately superior to many separate—and different cable systems.

Slide Number 22

Star Topology Diagram

Slide Number 23

A Cat-5 star configuration offers these advantages

- Network Scalability
- Standardization
- Services
- Network Management and Reliability

Slide Number 24

Network Scalability

- Performance as required
- Design Flexibility
- Protocol and application independent

Standardization

- Compliant with industry standards
- Identical Physical Network Interfaces
- Standardized Network Equipment
- Interoperability

Slide Number 26

Services

- Installation
- Troubleshooting
- Maintenance

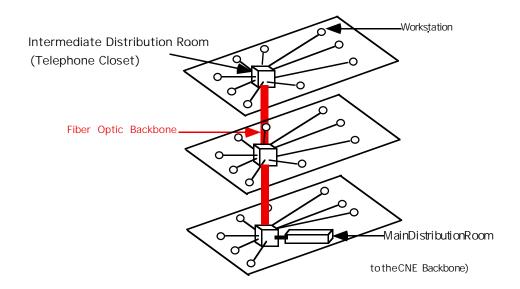
Slide Number 27

Network Management and Reliability

- Fault Management
- Performance Management
- Configuration Management
- Security Management

General Strategies

- Always use wall mounted outlet boxes
- Use duct for all cable runs
- Mark all cables at both ends
- Have spare cable drops
- Neatness Counts



For cable runs too long for cat-5 such as between floors and buildings use fiber optic cables.

Fiber Optic cable will support any transmission rate that Cat-5 will handle.

Slide Number 31

Careful construction of your Cable Plant will support any

NETWORK EQUIPMENT And WORKSTATIONS AND PRINTERS

that you have presently and into the next generation of networks

Slide Number 32